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Chapter 3. Calculus of Variations 
   
(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 
6) 
 
In preparation for our study of Lagrangian and Hamiltonian dynamics in later chapters, 
we must first consider the principles and techniques of the calculus of variations. 

3.1 Statement of the Problem 
 
Let us first define an integral J  such that 
 
  
 J = f y x( ), !y x( ); x{ }dx

x1

x2

"  (3.1) 

 
where f  is a function of the dependent variable y x( )  and its derivative !y x( ) " dy dx  
(the semicolon in f  separates them from the independent variable x ). The problem 
consists of imposing virtual variations on y x( )  and finding which variation brings the 
functional integral J  to an extremum. The limits of integration are kept fixed during this 
process. In order to keep track of the different versions of y x( )  we will extend its 
definition to include a new parameter !  such that 
 
 y !, x( ) = y x( ) +!" x( )  (3.2) 
 
where ! x( )  is some function that has a continuous first derivative, and vanishes at the 
integration limits. We therefore impose the condition that ! x

1( ) = ! x
2( ) = 0 . We further 

define the function corresponding to ! = 0 , y 0, x( ) = y x( ) , as the one that yields the 
extremum for J . The situation is shown in Figure 3.1. For example, if y x( )  brings J  to 
a minimum, then any other function must make J  increase. With the introduction of the 
parameter !  in equation (3.2), the integral also becomes a function of !  
 
 J !( ) = f y !, x( ), "y !, x( ); x{ }dx

x1

x2

#  (3.3) 

 
The condition necessary for equation (3.3) to be an extremum is 
 

 !J

!"
" =0

= 0  (3.4) 

 
for all function ! x( ) . 
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Figure 3.1 – The function y x( )  is the path that makes the functional J  an extremum. 
The neighboring functions y x( ) +!" x( )  vanish at the integration limits and may be 
close to y x( ) , but they are not extrema. 

 
Example 
 
Consider the function f = !y( )

2 , with y = x . Add to y x( )  the function ! x( ) = sin x( ) , 
and find the functional J !( )  with integration limits 0 and 2! . Show that the extremum 
of J !( )  happens when ! = 0 . 
 
Solution. We first extend y x( )  to include !  and ! x( )  
 
 y !, x( ) = x +! sin x( ).  (3.5) 
  
We then calculate 
 

 

J !( ) = 1+! cos x( )( )
2

dx
0

2"

#
= 1+ 2! cos x( ) +! 2

cos
2
x( )( )dx

0

2"

#

= 1+
! 2

2
+ 2! cos x( ) +

! 2

2
cos 2x( )

$
%&

'
()
dx

0

2"

#
= 2" +! 2" .

 (3.6) 

 
We see that J !( )  is always greater than J 0( ) . It can also be verified that 
!J !"

" =0
= 0 . 
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3.2 Euler’s Equation 
 
We now calculate the derivative of J !( )  (i.e., of equation (3.3)) to meet the condition 
expressed by equation (3.4) 
 

 

!J
!"

=
!
!"

f y x( ), #y x( ); x{ }dx
x1

x2

$

=
!f
!y

!y
!"

+
!f
! #y

! #y
!"

%
&'

(
)*
dx

x1

x2

$ .

 (3.7) 

 
Since y !, x( ) = y x( ) +!" x( ) , we have !y !" = # x( )  and ! "y !# = d$ dx . Inserting 
these two derivatives in equation (3.7) 
 

 !J
!"

=
!f
!y

# +
!f
! $y

d#
dx

%
&'

(
)*x1

x2

+ dx.  (3.8) 

 
We integrate by parts the second term in the integral 
 
 

 !f
! "y

d#
dx

dx =
x1

x2

$
!f
! "y

# x( )
x1

x2 %
d

dx

!f
! "y

&
'(

)
*+
# x( )dx

x1

x2

$ .  (3.9) 

 
The first term on the right hand side vanishes since ! x

1( ) = ! x
2( ) = 0 . Inserting the 

remaining term in equation (3.8) we get  
 

 

!J
!"

=
!f
!y

# x( ) $
d

dx

!f
! %y

&
'(

)
*+
# x( )

&

'(
)

*+
dx

x1

x2

,

=
!f
!y

$
d

dx

!f
! %y

&
'(

)
*+
# x( )dx

x1

x2

, .

 (3.10) 

 
Even if ! x( )  is subjected to the conditions that it vanishes at the integration limits and 
that it has a continuous first derivative, it is otherwise completely arbitrary. It must be, 
therefore, that the quantity that is between the parentheses in the last equation of (3.10) 
cancels when !J !"

" =0
= 0 . That is 

 

 
!f
!y

"
d

dx

!f
! #y

$
%&

'
()
= 0  (3.11) 
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where y  and !y  are now the original functions since !  is now set to zero. Equation 
(3.11) is the necessary condition for the functional J  to be an extremum, and is known as 
Euler’s equation. 
 
Examples 
 
1. The shortest distance between two points in a plane. An element of length in a plane is  
 
  
 ds = dx

2
+ dy

2  (3.12) 
 
 
and the total length of any curve going between point x

1
, y
1( )  and x

2
, y
2( )  is 

 

 I = ds = 1+
dy

dx

!
"#

$
%&
2

dx.
x1

x2

'x1 ,y1( )

x2 ,y2( )

'  (3.13) 

 
The condition that the curve be the shortest path is that I  be a minimum. We, therefore, 
define 
 

 f = 1+
dy

dx

!
"#

$
%&
2

.  (3.14) 

 
Inserting f  in equation (3.11) with  
 

 
!f

!y
= 0,

!f

! "y
=

"y

1+ y '( )
2
,  (3.15) 

 
we have 
 

 d

dx

!y

1+ !y( )
2

"

#
$
$

%

&
'
'
= 0  (3.16) 

 
or  
 

 
!y

1+ !y( )
2

= cste.  (3.17) 

 
This can only be true if  
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 !y = a,  (3.18) 
 
where a  is a constant. Integrating equation (3.18) finally yields 
 
 y = ax + b,  (3.19) 
 
with b  an another constant (of integration). We recognize in equation (3.19) the equation 
of a straight line. 
 
2. The problem of the brachistochrone. Consider a particle constrained to move in a force 
field (e.g., gravity), starting at rest from a point x

1
, y
1( )  to some lower point x

2
, y
2( ) . Find 

the path that allows the particle to accomplish the transit in the least possible time. We 
assume that the force on the particle is constant and that there is no friction. 
 
Solution. Let’s choose the point x

1
, y
1( )  as the origin, and assume that the force field is 

directed along the positive x-axis (see Figure 3.1). Because of the assumptions of a 
constant force field (i.e., the field is conservative) and the absence of friction, the total 
energy T +U  must be conserved. Furthermore, since the particle starts from rest at 
x
1
, y
1( )  and that we chose this point as the origin (i.e., U = 0 ), we have 

 
 T +U = 0.  (3.20) 
 
At the arrival point x

2
, y
2( )  we have T = mv

2
2,  and U = !mgx . Using equation (3.20), 

the velocity of the particle will, therefore, be 
 
 v = 2gx .  (3.21) 
  
 

Figure 3.2 – The brachistochrone problem. We must find the path that will bring a 
particle subjected to the force field F  from point x

1
, y
1( )  to point x

2
, y
2( )  in the least 

amount of time. 
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The total time taken by the particle to travel the distance between the two points is given 
by the following integral 
 

 

t =
ds

v
=

x1 ,y1( )

x2 ,y2( )

!
dx

2
+ dy

2

2gxx1 ,y1( )

x2 ,y2( )

!

=
1+ "y( )

2

2gx
dx.

x1 =0

x2

!

 (3.22) 

 
We can, therefore, identify the function to be used in Euler’s equation as  
 

 f =
1+ !y( )

2

2gx
.  (3.23) 

 
When we apply Euler’s equation (3.11) we find that  
 

 
!f

!y
= 0,  (3.24) 

 
which in turn implies that 
 

 
d

dx

!f
! "y

#
$%

&
'(
=
d

dx

"y

2gx 1+ "y( )
2( )

#

$

%
%

&

'

(
(
= 0. (3.25) 

 
This last equation can be written as  
 

 !y

x 1+ !y( )
2( )

=
1

2a
,  (3.26) 

  
where a  is a constant. If now square equation (3.26), rearrange the equation (we multiply 
by x  on both sides of the equality), and rewrite the result in the form of an integral we 
get   
 

 y =
xdx

2ax ! x2
."  (3.27) 

 
We now make the following change of variable 
 

 
x = a 1! cos "( )( )

dx = asin "( )d",
 (3.28) 
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Figure 3.3 – The solution of the brachistochrone problem: a cycloid. 

 
and equation (3.27)  becomes 
 
 y = a 1! cos "#( )( )d "# .

0

#

$  (3.29) 

 
This last integral is easily solved to give 
 
 y = a ! " sin !( )( ) + cste.  (3.30) 
 
Setting the constant in equation (3.30) to zero, we now have the parametric equations of a 
cycloid, that is 
 

 
x = a 1! cos "( )( )

y = a " ! sin "( )( ).
 (3.31) 

 
The path of the particle described by equation (3.31) is shown in Figure 3.3. 
 
3. Minimum surface of revolution. Suppose we form a surface of revolution by taking 
some curve passing between two fixed end points x

1
, y
1( )  and x

2
, y
2( )  defining the 

x, y( ) -plane, and revolving it around the y-axis (see Figure 3.4). The problem is to find 
the curve for which the surface area is a minimum.  
 
Solution. The area of a strip of surface is 
 
 dA = 2! xdx 1+ "y( )

2
,  (3.32) 

 
and that for the total area is 
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Figure 3.4 – Minimum surface of revolution. The geometry of the problem and area dA  
are indicated to minimize the surface of revolution around the y-axis. 

 
 A = 2! x 1+ "y( )

2

x1

x2

# dx.  (3.33) 

 To find the extremum we define 
 

 f = x 1+ !y( )
2
,  (3.34) 

 
and insert it in equation (3.11). We find 
 

 
!f

!y
= 0,

!f

! "y
=

x "y

1+ y '( )
2
,  (3.35) 

 
which implies that  
 

 
x !y

1+ !y( )
2
= a,  (3.36) 

 
with a some constant. Squaring the above equation and factoring terms, we have 
 
 !y( )

2
x
2
" a

2( ) = a2 ,  (3.37) 
 
or solving, 
 

 dy

dx
=

a

x
2
! a

2

.  (3.38) 
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The general solution of this differential equation is 
 

 y = a
dx

x
2 ! a2

= acosh
!1 x

a

"
#$

%
&'( + b,  (3.39) 

 
or  
 

 x = acosh
y ! b
a

"
#$

%
&'
,  (3.40) 

where b is another constant of integration. Equation (3.40) is that of a catenary, the curve 
of a flexible cord hanging freely between two points of support. 
 

3.3 The !  Notation 
 
In analyses that use calculus of variations, or in physics, we often encounter a different 
notation than what was presented in the preceding sections. The so-called !  notation can 
be used to rewrite equation (3.10) as 
 

 !J
!"

d" =
!f
!y

#
d

dx

!f
! $y

%
&'

(
)*
!y
!"

d" dx,
x1

x2

+  (3.41) 

 
which is then expressed as 
 

 !J =
"f
"y

#
d

dx

"f
" $y

%
&'

(
)*
!ydx,

x1

x2

+  (3.42) 

 
where 
 

 

!J

!"
d" # $J

!y

!"
d" # $y.

 (3.43) 

 
The condition of extremum then becomes 
 
 !J = ! f y, "y ; x{ }dx = 0

x1

x2

# .  (3.44) 

 
We now solve this equation 
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!J = ! f

x1

x2

"

=
#f
#y

!y +
#f
# $y

! $y
%
&'

(
)*
dx.

x1

x2

"
 (3.45) 

 
However, 
 

 

! "y = !
dy

dx

#
$%

&
'(
= ! lim

)x*0

y x + )x( ) + y x( )

)x
#
$%

&
'(

= lim
)x*0

!y x + )x( ) + !y x( )

)x

=
d

dx
!y( ).

 (3.46) 

 
Inserting this equation in equation (3.45), we get 
 

 
!J =

"f
"y

!y +
"f
" #y

d

dx
!y( )

$
%&

'
()
dx

x1

x2

*

=
"f
"y

+
d

dx

"f
" #y

$
%&

'
()
!ydx,

x1

x2

*
 (3.47) 

 
where we have integrated by parts to derive the last equation. Since !y  is arbitrary, !J  
can only equal zero if the quantity in parentheses vanishes. This quantity is, as we saw 
before, Euler’s equation. 
 
It is important to realize that the !  notation is only an expedient for the derivation of 
Euler’s equation. The varied path represented by !y  is a virtual displacement from the 
actual path that is consistent with the forces and constraint of the problem, but that is 
operated with the independent variable x being kept fixed. (The independent variable, 
when we apply calculus of variations to physical problems, will become the time. In that 
context, the varied path !y , in fact, does not even need to correspond to a possible path 
of motion.) 
 

3.4 Functions with Several Dependent Variables 
 
Euler’s equation (i.e., equation (3.11)) previously derived is the solution of the variation 
problem when only one dependent function y x( )  was to be found to bring the integral J  
to an extremum. When dealing with physical problems, it is more common that several 
such functions are involved. We then have 
 



50 

 f = f y
1
x( ), y1! x( ), ... , yn x( ), yn! x( ); x{ },  (3.48) 

 
or simply 
 
 f = f yi x( ), yi! x( ); x{ }, i = 1, 2, ... , n.  (3.49) 

 
Just as was done for the case of a single function, we write 
 
 yi !, x( ) = yi x( ) +!"i x( ),  (3.50) 
 
and 
 

 
!J
!"

=
!f
!yi

#
d

dx

!f

!yi$

%

&
'

(

)
* +i x( )dx,

x1

x2

,  (3.51) 

 
where Einstein’s summation convention was used. Because the variations !

i
x( )  are all 

independent of one another, the vanishing of equation (3.51) when ! = 0  implies that 
each equation in parentheses vanishes simultaneously. That is 
 

 !f
!yi

"
d

dx

!f

!yi#

$

%
&

'

(
) = 0, i = 1, 2, ... , n.  (3.52) 

 

3.5 Euler’s Equation with Equations of Constraints 
 
The problem of finding an extremum can be further expanded to include cases where 
constraints are imposed. For example, determining the shortest path between two points 
can be complicated by the fact that we may require the path to follow the surface of a 
given shape (e.g., a sphere). When this is the case, one must take the equations that make 
these requirements explicit. These are called equations of constraints.  
 
Let’s consider the case where we have two dependent variables y and z with one equation 
of constraint, then 
 
 f = f y, !y , z, !z ; x{ }. (3.53) 
 
We now write equation (3.51) for the case of two variables 
 

 
!J
!"

=
!f
!y

#
d

dx

!f
! $y

%
&'

(
)*
!y
!"

+
!f
!z

#
d

dx

!f
! $z

%
&'

(
)*
!z
!"

+

,
-

.

/
0dx.

x1

x2

1  (3.54) 
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There is, however, an equation of constraint that we must somehow include in the 
problem. It is of the form 
 
 g y, z; x{ } = 0. (3.55) 
 
For example, in the case of restricting the problem to a great circle (of radius a) on the 
surface of a sphere, we would have 
 
 y

2
+ z

2
! a

2
= 0. (3.56) 

 
(Incidentally, constraints that can be written in a form similar to equation (3.55) are 
called holonomic. Other types of constraint that can’t be expressed in this fashion (e.g., if 
“=” is replaced by “! ”) are called non-holonomic.) 
 
Because of equation (3.55), the variations !y !"  and !z !"  are no longer independent, 
so the two terms in the parentheses of equation (3.54) do not vanish separately when 
! = 0 . If we differentiate the equation of constraint, we have 
 

 dg =
!g
!y

!y
!"

+
!g
!z

!z
!"

#
$%

&
'(
d" = 0.  (3.57) 

  
We can evaluate the derivatives with respect to !  with  
 

 
y !, x( ) = y x( ) +!"1 x( )

z !, x( ) = z x( ) +!"2 x( ),
 (3.58) 

 
which gives 
 

 
!y

!"
= #

1
x( ),

!z

!"
= #

2
x( ).  (3.59) 

 
Inserting these in equations (3.57), and (3.54), we respectively get 
 

 
!g

!y
"
1
x( ) = #

!g

!z
"
2
x( ),  (3.60) 

 
and 
 

 
!J
!"

=
!f
!y

#
d

dx

!f
! $y

%
&'

(
)*
+
1
x( ) +

!f
!z

#
d

dx

!f
! $z

%
&'

(
)*
+
2
x( )

,

-
.

/

0
1dx.

x1

x2

2  (3.61) 

 
We now insert equation (3.60) in equation (3.61) while slightly rearranging the terms 
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!J
!"

=
!f
!y

#
d

dx

!f
! $y

%
&'

(
)*
#

!f
!z

#
d

dx

!f
! $z

%
&'

(
)*

!g !y
!g !z

%

&'
(

)*
+

,
-

.

/
011 x( )dx.

x1

x2

2  (3.62) 

 
The terms within the brackets in this last equation now include a contribution from the 
equation of constraint, and can be set to zero. That is 
 

 
!f
!y

"
d

dx

!f
! #y

$
%&

'
()

!g
!y

$
%&

'
()

"1

=
!f
!z

"
d

dx

!f
! #z

$
%&

'
()

!g
!z

$
%&

'
()
"1

.  (3.63) 

  
The left-hand side of equation (3.63) involves only derivatives of f and g with respect to 
y, !y , and x , while the right-hand side involves only derivatives with respect to z, !z  and 
x . But because both y  and z  are functions of x , the only way that the two sides of 
equation (3.63) can be equal for all value of x  is if they are both equal to the same 
function of x . We define this function as !" x( ) , and we have 
 

 

!f

!y
"
d

dx

!f

! #y
+ $ x( )

!g

!y
= 0

!f

!z
"
d

dx

!f

! #z
+ $ x( )

!g

!z
= 0

 (3.64) 

   
We, therefore, need to find a solution to three equations (i.e., y x( ) , z x( ) , and ! x( ) ) in 
order to completely solve the problem. For this, the two equations (3.64) along with the 
equation of constraint (3.55), for a total of three, will be used. The function ! x( )  is 
known as a Lagrange undetermined multiplier. 
 
The procedure described in this section can readily be generalized to the case of several 
dependent variables and more than a single equation of constraints are involved. We then 
have the following solution 
 

 

!f

!yi
"
d

dx

!f

!yi
#
+ $ j x( )

!gj

!yi
= 0

gj yi; x{ } = 0.

 (3.65) 

   
It is to be noted that the equation of constraints will often be presented in a differential 
form such as 
 

 
!gj

!yi
dyi = 0.  (3.66) 
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Figure 3.5 – A disk rolling on an incline plane without slipping. 

 
Example 
 
Determine the equation of constraint for a disk rolling on an incline plane without 
slipping. 
 
Solution.  
From Figure 3.5 we can easily determine the relation the two coordinates y  and !  as 

 
 y = R!,  (3.67) 
 
with R  the radius of the disk. The equation of constraint is then 
 
 g y,!( ) = y " R! = 0,  (3.68) 
 
or in a differential form 
 

 
!g

!y
= 1,

!g

!"
= #R.  (3.69) 

3.6 Equation of Constraints as Integrals 
 
It is also possible that an equation of constraints can be stated in the form of an integral. 
For example, suppose that we want to find an extremum for a functional integral J  by 
determining the corresponding curve which satisfies the boundary conditions y a( ) = A  
and y b( ) = B  
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 J y[ ] = f y, !y ; x{ }dx.

a

b

"  (3.70) 

 
Suppose also that the constraint is stated as a functional (or integral) K  that fixes the 
value for the length of the curve 
 
  
 

 

K y[ ] = g y, !y ; x{ }dx = !,
a

b

"  (3.71) 

 
where  !  is the aforementioned length of y . Similarly as was done before, we now 
consider virtual variations on the curve such that y !, x( ) = y x( ) +!" x( ) . Since these 
variations apply to both J  and K , we can write  
 

 
J = J !( )

K = K !( ),
 

 
and, 
 
  

 

!J

!"
" =0

= 0

!K

!"
" =0

= 0.

 (3.72) 

 
Furthermore, since K ,  and !K !"  are not a function of x , we can introduce a Lagrange 
undetermined multiplier such that  
 

 !J
!"

+ #
!K
!"

$
%&

'
()" =0

=
!
!"

J + #K( )" =0
= 0. (3.73) 

 
Take note that in this case !  is truly a constant; it is not a function of the independent 
variable x . We now rewrite equation (3.73) as  
 

 
!

!"
f + #g( )dx

a

b

$
" =0

= 0.  (3.74) 

 
We can find the extremum for equation (3.74) in the same way as was done before, and 
we get 
 

 !f
!y

"
d

dx

!f
! #y

+ $
!g
!y

"
d

dx

!g
! #y

%
&'

(
)*
= 0,  (3.75) 
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with the constraints y a( ) = A , y b( ) = B , and 

 
K y[ ] = ! . 

 
Example 
 
We want to maximize the area of a closed curve y x( )  that has a length  ! . 
 
Solution. The area inside a closed curve and its length are  
 

 

 

J = dxdy!!
K = ds = !."!

 (3.76) 

 
Since the curve is closed, it is appropriate to change coordinates and consider the curve 
r !( )  instead of y x( ) , with !  as the independent variable instead of x . Equations (3.76) 
can be rewritten as 
 

 

 

J = !r d !r d"
0

r "( )

#
0

2$

# =
1

2
r
2 "( )d"

0

2$

#

K = r "( )d" = !.
0

2$

#
 (3.77) 

 
We can now identify the two functions f  and g  
 

 f =
1

2
r
2
!( ), g = r !( ). (3.78) 

 
Using equation (3.75) we find 
 
 r !( ) + " = 0,  (3.79) 
 
which implies that r  is a constant. Using equation (3.77) we find 
 

 

 

r = !" =
!

2#

J = #r
2
=
!
2

4#
.

 (3.80) 

 
We therefore find that the area is maximized if the curve is that of a circle. 


